小智头像图片
AI教程 2025年01月8日
0 收藏 0 点赞 513 浏览 3075 个字
摘要 :

最新版AI大模型面试八股文106-110题: AI大模型风头正劲,相关岗位炙手可热,竞争也异常激烈。想要在面试中脱颖而出,除了扎实的技术功底,还需要对面试套路了如指掌。……

哈喽!伙伴们,我是小智,你们的AI向导。欢迎来到每日的AI学习时间。今天,我们将一起深入AI的奇妙世界,探索“最新版AI大模型面试八股文106-110题”,并学会本篇文章中所讲的全部知识点。还是那句话“不必远征未知,只需唤醒你的潜能!”跟着小智的步伐,我们终将学有所成,学以致用,并发现自身的更多可能性。话不多说,现在就让我们开始这场激发潜能的AI学习之旅吧。

最新版AI大模型面试八股文106-110题

最新版AI大模型面试八股文106-110题:

AI大模型风头正劲,相关岗位炙手可热,竞争也异常激烈。想要在面试中脱颖而出,除了扎实的技术功底,还需要对面试套路了如指掌。这份最新版AI大模型面试八股文,正是为你量身打造的“通关秘籍”!

106、请描述一下你认为的把self-attention 复杂度从O(n2) 降低到O(n)有效方案.
答案:
局部注意力机制:在全局self-attention中,每个位置的词语都与整个序列中的所有其他位置计算注意力权重。但实际上,相对较远的词语之间的关联性可能并不是那么重要。因此,我们可以采用一种局部注意力机制,只计算每个位置与其周围一定范围内的词语之间的注意力。
窗口化注意力:在局部注意力机制中,可以使用一个固定大小的窗口来定义每个位置与其相邻词语的范围。例如,可以选择一个固定大小的窗口,如5或7,然后只计算每个位置与其相邻的5个或7个词语之间的注意力权重。
可学习的位置偏移:为了使模型能够学习到适合不同任务和数据的局部注意力模式,可以引入可学习的位置偏移参数。这些参数可以学习到不同位置之间的相对关系,从而指导模型在计算注意力权重时选择正确的窗口范围。
多尺度注意力:除了固定大小的窗口,还可以引入多尺度的注意力机制。例如,在每个位置处可以同时计算多个不同大小的窗口范围的注意力,然后将它们进行加权平均,以综合考虑不同范围内的词语之间的关联性。

107、如果使用Transformer 对不同类别的数据进行训练,数据集有些类别的数据量很大(例如有10 亿条),而大多数类别的数据量特别小(例如可能只有100 条),此时如何训练出一个相对理想的Transformer 模型来对处理不同类别的任务?
答案:
类别加权损失函数:使用加权损失函数来平衡不同类别之间的数据量差异。对于数据量较小的类别,可以赋予更高的权重,以便模型更加关注这些类别的训练样本。这样可以确保模型在训练过程中更加平衡地学习到每个类别的特征。
数据增强:对于数据量较小的类别,可以采用数据增强的方法来扩充训练数据集。数据增强技术可以通过对原始数据进行随机变换、旋转、剪裁等操作来生成新的训练样本,从而增加数据集的大小和多样性。
迁移学习:利用在数据量较大的类别上预训练的模型参数作为初始化参数,然后在数据量较小的类别上进行微调。这种迁移学习的方法可以利用大规模数据集中学习到的通用特征来加速和提高在小规模数据集上的性能。
数据重采样:对于数据量较大的类别,可以采用数据重采样的方法来减少其样本数量,以使不同类别之间的数据量更加平衡。常见的重采样方法包括随机欠采样、SMOTE(Synthetic Minority Over-sampling Technique)等。
类别分层采样:在训练过程中,可以采用类别分层采样的方法来确保每个批次中包含各个类别的样本,从而防止某些类别的样本被忽略。这样可以确保模型在每个批次中都能够观察到不同类别的样本,有助于模型更全面地学习到每个类别的特征。

108、如何使用使用多种类小样本对Transformer 训练而取得很好的分类效果,请详述背后的架构设计和数学机制
答案:
类别加权损失函数:设计一种损失函数,对不同类别的样本赋予不同的权重,使得模型在训练时更关注那些类别数据量较小的样本。常见的做法是使用加权交叉熵损失函数,其中每个类别的权重与其样本数量的倒数成正比。这样可以确保模型更加关注样本量少的类别,从而提高对小类别数据的分类性能。过采样和欠采样:通过过采样来增加小类别的样本量,或者通过欠采样来减少大类别的样本量,从而使得不同类别的样本数量更加平衡。这样可以帮助模型更好地学习到所有类别之间的特征和区分性信息。类别嵌入:引入类别嵌入向量作为Transformer模型的输入,以将类别信息融入到模型中。类别嵌入向量可以通过预训练的方式得到,或者通过模型训练过程中学习到。这样可以帮助模型更好地理解和区分不同类别之间的语义差异。
类别自适应注意力:在Transformer模型的注意力机制中引入类别自适应注意力,使得模型在不同类别之间可以动态调整注意力权重,更好地关注样本量较小的类别。这样可以提高模型对小类别数据的分类性能。
迁移学习:利用已经在大数据集上预训练好的Transformer模型进行迁移学习,然后在小样本数据上微调。这样可以借助大数据集上学到的特征和知识,帮助模型更快地收敛并且更好地泛化到小样本数据。

109、在给Transformer 输入Embeddings 的时候是否可以使用多方来源的词嵌入训练模型?请阐述背后的数学原理及工程上的具体实现机制
答案:
是的,Transformer模型在输入Embeddings时可以使用来自多方来源的词嵌入进行训练。这种方法被称为多嵌入(multi-embedding)策略,它可以结合来自不同数据集、不同语料库或不同预训练模型的词嵌入,以提高模型在不同任务或不同领域的性能。下面是一些数学原理和工程上的具体实现机制:数学原理:在Transformer模型中,Embeddings层的目的是将输入的离散词汇映射到连续的词嵌入空间中,以便模型能够理解输入文本的语义和语法信息。使用多方来源的词嵌入进行训练时,实际上是在为模型提供更丰富的语义信息,从而增强模型的泛化能力和表征能力。通过结合多个来源的词嵌入,可以充分利用不同数据集或不同领域的语义信息,从而提高模型的性能。
具体实现机制:实现多嵌入策略的具体方法有几种:
简单融合:将来自多个来源的词嵌入简单地拼接在一起或者取平均,作为模型的输入Embeddings。这种方法简单直观,但可能无法很好地利用不同来源的语义信息。
加权融合:对来自不同来源的词嵌入进行加权融合,权重可以通过训练得到或者手动设定。这样可以根据不同来源的词嵌入的重要性对其进行更灵活的控制。
门控机制:使用门控机制(如门控单元或者注意力机制)来动态地调整不同来源的词嵌入的贡献,以适应不同任务或不同上下文的需求。
领域特定嵌入:为不同的领域或任务训练独立的词嵌入,并将其与通用的词嵌入进行融合。这样可以使模型在不同领域或任务中更好地泛化。

110、更深更宽的Transformer 网络是否意味着能够获得更强的预训练模型?请至少从3个角度,例如架构的工程化落地、参数的信息表达能力、训练任务等,来展开具体的分析
答案:
架构的工程化落地:更深更宽的Transformer网络通常具有更多的层和更多的注意力头,这意味着模型可以捕捉更复杂和更丰富的语义信息。在工程化落地中,更大的模型可能能够更好地适应不同的任务和数据,因为它们具有更强大的表示能力,能够更好地理解和处理复杂的语言现象。
参数的信息表达能力:更深更宽的Transformer网络具有更多的参数,因此具有更强大的信息表达能力。更多的参数可以使模型学习到更复杂和更细粒度的特征,从而提高模型对输入数据的建模能力。这意味着更大的Transformer模型可以更好地捕捉语言的结构和语义,从而产生更具有泛化能力的预训练模型。训练任务:更深更宽的Transformer网络可能可以在更大规模的数据集上进行训练,从而提高模型的泛化能力。通过在更大的数据集上进行训练,模型可以更好地学习到语言的统计规律和语义信息,从而提高对新任务的适应能力。此外,更大的模型还可以通过更长时间的训练来获得更好的性能,因为它们具有更多的参数和更强大的表示能力,可以更好地利用数据集中的信息。

最新版AI大模型面试八股文111-115题
最新版AI大模型面试八股文111-115题:AI大模型风头正劲,相关岗位炙手可热,竞争也异常激烈。想要在面试中脱颖而出,除了扎实的技术功底...

嘿,伙伴们,今天我们的AI探索之旅已经圆满结束。关于“最新版AI大模型面试八股文106-110题”的内容已经分享给大家了。感谢你们的陪伴,希望这次旅程让你对AI能够更了解、更喜欢。谨记,精准提问是解锁AI潜能的钥匙哦!如果有小伙伴想要了解学习更多的AI知识,请关注我们的官网“AI智研社”,保证让你收获满满呦!

微信打赏二维码 微信扫一扫

支付宝打赏二维码 支付宝扫一扫

版权: 转载请注明出处:https://www.ai-blog.cn/2224.html

相关推荐
03-23

如何在 Java 中基于 LangChain 编写大语言模型应用: 在本教程中,我们将会研究 LangChain 的细节…

小智头像图片
152
03-12

DeepSeek企业级部署实战指南: 对于个人开发者或尝鲜者而言,本地想要部署 DeepSeek 有很多种方案…

小智头像图片
96
03-12

如何使用DeepSeek助你增强求职竞争力: 职场篇 常见的简历问题 1. 格式混乱或排版不专业 • 问题:…

小智头像图片
205
03-12

DeepSeek官方提示词:让你的API应用和官方一样强: 本文讨论了DeepSeek官方关于让API应用和官方一…

小智头像图片
100
03-12

关于 DeepSeek 的研究和思考 (Archerman Capital): 关于这几天很火的 DeepSeek, 我们 (Archerman …

小智头像图片
115

AI教程DeepSeek提示词之代码解释: 代码解释​ ​ 对代码进行解释,来帮助理解代码内容。​ ​ ​ 请解…

小智头像图片
122

AI教程DeepSeek提示词之代码改写: 代码改写​ ​ 对代码进行修改,来实现纠错、注释、调优等。​ ​ …

小智头像图片
513

AI教程DeepSeek提示词之代码生成: 代码生成​ ​ 让模型生成一段完成特定功能的代码。​ ​ 用户提示…

小智头像图片
513
发表评论
暂无评论

还没有评论呢,快来抢沙发~

助力原创内容

快速提升站内名气成为大牛

扫描二维码

手机访问本站

二维码
vip弹窗图片